Cambridge O Level

CENTRE NUMBER \square CANDIDATE NUMBER \square

CHEMISTRY

You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown in brackets [].
- Notes for use in qualitative analysis are provided in the question paper.

For Examiner's Use	
1	
2	
Total	

This document has 8 pages. Blank pages are indicated.

1 Citric acid is a carboxylic acid found in lemon juice.
The equation for the reaction between citric acid, $\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$, and potassium hydroxide, KOH , is shown.

$$
3 \mathrm{KOH}+\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \rightarrow \mathrm{~K}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}+3 \mathrm{H}_{2} \mathrm{O}
$$

The mass of citric acid dissolved in $500 \mathrm{~cm}^{3}$ of an aqueous solution can be determined by titration with $\mathrm{KOH}(\mathrm{aq})$.

Thymolphthalein is used to determine the end-point of the titration.
\mathbf{P} is $0.100 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{KOH}(\mathrm{aq})$.
\mathbf{Q} is aqueous citric acid.
(a) Put P into the burette.

Pipette $25.0 \mathrm{~cm}^{3}$ of \mathbf{Q} into a flask and titrate with \mathbf{P} using three drops of thymolphthalein as the indicator.

The end-point is the first appearance of a blue colour that remains for 30 seconds.
Record your results in the table.
Repeat the titration as many times as necessary to achieve consistent results.

Results

Burette readings

titration number	1	2			
final reading $/ \mathrm{cm}^{3}$					
initial reading $/ \mathrm{cm}^{3}$					
volume of \mathbf{P} used $/ \mathrm{cm}^{3}$					
best titration results $(\mathbb{\Omega})$					

Summary

Tick (\checkmark) the best titration results in the table.
Using the best titration results the average volume of \mathbf{P} required is cm^{3}.
(b) \mathbf{P} is $0.100 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{KOH}(\mathrm{aq})$.

Use your results from (a) to calculate the number of moles of KOH in the average volume of Pused.

Give your answer to three significant figures.
number of moles of KOH
(c) Use your answer from (b) to calculate the number of moles of citric acid in $25.0 \mathrm{~cm}^{3}$ of \mathbf{Q}.

$$
3 \mathrm{KOH}+\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \rightarrow \mathrm{~K}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}+3 \mathrm{H}_{2} \mathrm{O}
$$

number of moles of citric acid in $25 \mathrm{~cm}^{3}$ of \mathbf{Q}
(d) Use your answer from (c) to calculate:
(i) the concentration of citric acid in \mathbf{Q}.
concentration of citric acid in \mathbf{Q} \qquad $\mathrm{mol} / \mathrm{dm}^{3}$
(ii) the number of moles of citric acid in $500 \mathrm{~cm}^{3}$ of \mathbf{Q}.
(e) Citric acid is available in hydrated form.

The formula of hydrated citric acid is $\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \cdot \mathrm{H}_{2} \mathrm{O}$
Use your answer from (d)(ii) to calculate the mass of hydrated citric acid crystals needed to make $500 \mathrm{~cm}^{3}$ of \mathbf{Q}.
[$\left.A_{r}: H, 1 ; C, 12 ; 0,16\right]$
mass of hydrated citric acid in $500 \mathrm{~cm}^{3}$ of \mathbf{Q}
g [2]
[Total: 18]

2 You are provided with solution \mathbf{R} and solid \mathbf{S}.
(a) (i) Do the tests on R shown in the table.

Record your observations in the table.
You should test and name any gases evolved.

test no.	test	observations
$\mathbf{1}$	To 1 cm depth of \mathbf{R} in a test-tube, add a few drops of universal indicator solution. Keep the solution for use in test 2.	
$\mathbf{2}$	To the solution from test 1, add dilute nitric acid drop by drop until a change is seen.	
$\mathbf{3}$	To 1 cm depth of \mathbf{R} in a boiling tube, add 1 cm depth of aqueous sodium hydroxide. Gently warm the mixture. Keep the solution for use in test 4.	
$\mathbf{4}$	To the solution from test 3, add 3 cm depth of dilute nitric acid and then add 1 cm depth of aqueous silver nitrate.	

(ii) Identify the cation responsible for the colour seen in test 1.
cation \qquad
(iii) Identify the cation responsible for the observations in test 3.
cation \qquad
(iv) Identify the anion responsible for the observation in test 4.
anion
(b) (i) Do the tests on S shown in the table.

Record your observations in the table.
You should test and name any gases evolved.

test no.	test	observations
$\mathbf{1}$	To the sample of \mathbf{S} in a boiling tube, add 2 cm depth of dilute nitric acid. Keep the solution for use in tests $\mathbf{2 , 3}$ and $\mathbf{4 .}$	
$\mathbf{2}$	To 1 cm depth of the solution from test $\mathbf{1}$ in a test-tube, add aqueous sodium hydroxide drop by drop until a change is seen.	
$\mathbf{3}$	To 1 cm depth of the solution from test $\mathbf{1}$ in a test-tube, add aqueous ammonia drop by drop until a change is seen. Add excess aqueous ammonia.	
$\mathbf{4}$	To 1 cm depth of the solution from test $\mathbf{1}$ in a test-tube, add a few drops of dilute nitric acid and then add 1 cm depth of aqueous barium nitrate.	

(ii) Identify solid \mathbf{S}.
solid S

BLANK PAGE

QUALITATIVE ANALYSIS NOTES

Tests for anions

anion	test	test result
carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$	add dilute acid	effervescence, carbon dioxide produced
chloride $\left(\mathrm{Cl}^{-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I-) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate $\left(\mathrm{NO}_{3}^{-}\right)$ [in solution]	add aqueous sodium hydroxide, then add aluminium foil; warm carefully	ammonia produced
sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt., insoluble in excess dilute nitric acid

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium $\left(\mathrm{Al}^{3+}\right)$	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium $\left(\mathrm{NH}_{4}^{+}\right)$	ammonia produced on warming	-
calcium $\left(\mathrm{Ca}^{2+}\right)$	white ppt., insoluble in excess	no ppt.
chromium(III) $\left(\mathrm{Cr}^{3+}\right)$	green ppt., soluble in excess giving a green solution	green ppt., insoluble in excess
copper(II) $\left(\mathrm{Cu}^{2+}\right)$	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) $\left(\mathrm{Fe}^{2+}\right)$	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) $\left(\mathrm{Fe}^{3+}\right)$	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc $\left(\mathrm{Zn}^{2+}\right)$	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Tests for gases

gas	test and test result
ammonia $\left(\mathrm{NH}_{3}\right)$	turns damp red litmus paper blue
carbon dioxide $\left(\mathrm{CO}_{2}\right)$	turns limewater milky
chlorine $\left(\mathrm{Cl}_{2}\right)$	bleaches damp litmus paper
hydrogen $\left(\mathrm{H}_{2}\right)$	'pops' with a lighted splint
oxygen $\left(\mathrm{O}_{2}\right)$	relights a glowing splint

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

